Oxford Cambridge and RSA

GCE

Mathematics A

Unit H230/01: Pure Mathematics and Statistics
Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals , Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme Meaning E1 Mark for explaining a result or establishing a given result dep* Mark dependent on a previous mark, indicated by * cao Correct answer only oe Or equivalent rot Rounded or truncated soi Seen or implied www Without wrong working AG Answer given awrt Anything which rounds to BC By Calculator DR This question included the instruction: In this question you must show detailed reasoning.	

Subject-specific Marking Instructions for A Level Mathematics A

The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an mark may be specified

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.
E
Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km , when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.

Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error. If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
If in any case the scheme operates with considerable unfairness consult your Team Leader.

DR means the question requires detailed reasoning

Question		Answer	$\begin{gathered} \hline \text { Mks } \\ \hline \\ \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{AO} \\ \hline \\ 1.1 \mathrm{a} \\ 1.1 \\ \hline \end{array}$	Guidance	
1	(i)	DR $(\sqrt{3})^{7}$ or $\sqrt{3^{7}}$ or $3^{3} \times \sqrt{3}$ or $3 \sqrt{243}$ $27 \sqrt{3}$			or any correct intermediate step using $\sqrt[V]{ }$ or $3^{3} \times 3^{\frac{1}{2}}$ or $a=27, b=3$	If this step is not seen, M0A0
1	(ii)	DR $\begin{aligned} & \frac{\sqrt{2}}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} \\ & =\frac{\sqrt{2}+2}{1-2} \text { or } \frac{\sqrt{2}+2}{-1} \text { or } \frac{\sqrt{2}+2}{1+\sqrt{2}-\sqrt{2}-2} \\ & =-2-\sqrt{2} \quad \text { ISW } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{gathered} 1.1 \mathrm{a} \\ 1.1 \\ 1.1 \end{gathered}$	A1 for correct num OR denom or $-2+(-1 \sqrt{2})$ or $c=-2, d=-1$ and $e=2$	If this step is not seen, M0A0 Allow $-(2+\sqrt{2})$
2	(i)	$\begin{aligned} & 3^{2}-4 k=0 \\ & k=\frac{9}{4} \text { or } 2.25 \end{aligned}$	M1 A1 $[2]$	$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	$\begin{aligned} & x^{2}+3 x+k=(x+a)^{2}=x^{2}+2 a x+a^{2} \\ & \Rightarrow a=1.5 \Rightarrow k=1.5^{2} \end{aligned}$	or $(x+1.5)^{2}-2.25+k=0$
2	(ii)	$\begin{aligned} & (3-x)(2+x)>0 \quad \text { or }(x-3)(x+2)<0 \\ & -2<x<3 \text { or } 3>x>-2 \quad \text { ISW } \\ & \text { or } x \in(-2,3) \end{aligned}$	M1 A1 [2]	$\begin{aligned} & 1.1 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$	oe Allow $(3-x)(2+x)$ or $(x-3)(x+2)$ Allow $x>-2, x<3$ or $x>-2$ and $x<3$ Correct ans: BOD M1A1	or -2 and 3 seen $x>-2$ or $x<3$ M1A0 unless followed by ans

Question			Answer	$\begin{gathered} \hline \text { Mks } \\ \hline \text { B1 } \\ \text { B1 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AO } \\ \hline 1.1 \mathrm{a} \\ \hline 1.1 \end{array}$	Guidance	
3	(i)		$\sin \theta=0.5$ and -0.5 or $\sin \theta= \pm \sqrt{0.25}$ both $\theta=30^{\circ}$ and 150° $\theta=210^{\circ} \text { and } 330^{\circ}$			" -0.5 " may be implied by all 4 answers Ignore other answers for this B1 NB Correct ans with no wking: B1B1B1	$\begin{array}{r} \sin \theta=0.5, \theta=30 \text { and 210 } \\ \text { B0B0B0 } \\ \sin \theta= \pm 0.5, \theta=30 \text { and 210 } \\ \text { B1B0B0 } \end{array}$
3	(ii)		DR 60° and 240° seen or implied 20° seen $\phi=20^{\circ}, 80^{\circ} \quad$ With no other sol'ns	B1 B1 B1 [3]	$\begin{aligned} & \text { 1.1a } \\ & 1.1 \\ & 1.1 \end{aligned}$	Both needed, but ignore other values SC: correct ans with no wking: B0B1B0	
4	(i)	(a)	$2 x+3$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & {[2]} \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 for } 2 x & \text { or } 2 x^{1} \\ \text { B1 for }+3 & \text { or }+3 x^{0} \end{array}$	
4	(i)	(b)	$\begin{aligned} & 2 x+3>0 \\ & x>-\frac{3}{2} \end{aligned}$	M1 A1f [2]	$\begin{gathered} 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	ft their (i)(a) Allow $x=-\frac{3}{2}$ is min, stated or shown ft their (i)(a) so long as two terms	
4	(ii)		$3 x$ $-4 x^{\frac{1}{2}}$ $-\frac{4 x^{\frac{3}{2}}}{\frac{3}{2}}$ $-\frac{8}{3} x^{\frac{3}{2}}$ or equivalent $3 x-\frac{8}{3} x^{\frac{3}{2}}+c$	B1 M1 M1 A1 B1f [5]	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.2 \\ & 1.1 \\ & 2.5 \end{aligned}$	M1 for $x^{\frac{1}{2}}$ seen before integration M1 for $x^{\frac{3}{2}}$ or equiv seen after integ or increase their fractional power by 1 ISW Their integral $+c$ in final ans ISW eg " $y=$ " or attempt find c B0 if include integral sign or $\mathrm{d} x$.	May be implied by next line Correct ans, no working: full mks

Question			Answer			Guidance	
5			$N=3 k+1$ (where k is an integer) $(3 k+1)^{2}$ $=9 k^{2}+6 k+1$ $(3 k+2)^{2}$ $=3\left(3 k^{2}+2 k\right)+1$ or $=3\left(3 k^{2}+4 k+1\right)+1$,$~$ Both these are of form $3 p+1, p$ an integer	M1 M1 A1 A1 E1 [5]	3.1a 1.1 2.1 2.4 2.2a	One of these. Allow without " $\mathrm{N}=$ " Attempt one of these Both correct Or $9 k^{2}+6 k$ div by 3 or $9 k^{2}+12 k+3$ div by 3 One of these Must say p is integer or $3 k^{2}+2 k$ and $3 k^{2}+$ $4 k+1$ are integers Similar marks for method using $N=3 k+1$ $\& N=3 k-1$	Any letter other than p Allow p Allow p or similar in words. Allow p Dep on M1M1A1A1 $N=3 p+1: \max \mathrm{M} 0 \mathrm{M} 1 \mathrm{~A} 1 \mathrm{~A} 1 \mathrm{E} 0$
6	(i)		Roughly correct shape, both parts, no extra Clearly approaching axes in all four places	$\begin{gathered} \text { B1* } \\ \text { dep*B1 } \\ {[2]} \end{gathered}$	$\begin{aligned} & \text { 1.1a } \\ & \text { 1.1b } \end{aligned}$	not nec'y in correct posn on axes Allow thick or "double"	SC: half graph alone, correct shape, approaching axes, B1
	(ii)		$\begin{aligned} & x\left(x^{2}-6 x+9\right) \\ & =x(x-3)(x-3) \quad \text { or } x=0, x=3, x=3 \text { oe } \\ & \text { Curve drawn, with correct orientation: } \\ & \text { shape } N \text { roughly correct } \\ & \text { thro' }(0,0) \\ & \text { min on } x \text {-axis } \\ & \text { min labelled }(3,0) \text { or } 3 \end{aligned}$	M1 M1 B1 A1 A1 [5]	$\begin{gathered} 1.1 \mathrm{a} \\ 2.1 \\ 1.1 \\ 2.2 \mathrm{a} \\ 1.1 \end{gathered}$	may be implied by diag Allow thick or "double" or wobbly or straight or vertical sections. Indep not at $(0,0)$ NB A-mks dep on M1 SC: All correct but upside down or all correct but stops at O B4	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x+9=0$ Min at $(3,0)$ stated or drawn Correct graph: full marks regardless of wking
7			Allow without arrows or squiggles throughout				
7	(i)	(a)	$\mathbf{c}-\mathbf{a}$ oe	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.2		

Question			Answer	$\begin{gathered} \hline \text { Mks } \\ \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$\begin{gathered} \hline \mathbf{A O} \\ \hline \text { 3.1a } \\ \text { 1.1b } \end{gathered}$	Guidance	
7	(i)	(b)	$\begin{array}{ll} \mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a}) & \text { or } \mathbf{c}+\frac{1}{2}(\mathbf{a}-\mathbf{c}) \\ =\frac{1}{2}(\mathbf{a}+\mathbf{c}) & \text { or } \frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{c} \end{array}$			$\mathbf{a}+\frac{1}{2}$ their (a) or $\mathbf{c}-\frac{1}{2}$ their (a) Correct ans without wking: M1A1	
	(ii)		$\overrightarrow{O B}=(\mathbf{a}+\mathbf{c})$ $\Rightarrow \overrightarrow{O P}=\frac{1}{2} \overrightarrow{O B} \quad$ Must see previous line $\Rightarrow P$ is midpt of $O B$ or $O P B$ is a straight line and $O P=P B$ Hence diagonals of $/ / \mathrm{m}$ bisect one another	M1 A1* dep* A1 E1 [4]	3.1a 1.1 2.1 2.2a	$\overrightarrow{P B}=\mathbf{a}+\frac{1}{2}(\mathbf{c}-\mathbf{a})$ or $\mathbf{a}+\frac{1}{2}$ their (i)(a) or $\mathbf{c}+\frac{1}{2}(\mathbf{a}-\mathbf{c})$ $\left(=\frac{1}{2}(\mathbf{a}+\mathbf{c})\right.$ oe $), \quad \mathrm{ft}$ their $(\mathrm{i})(\mathrm{a})$ NB $\overrightarrow{P B}=\frac{1}{2}(\mathbf{a}+\mathbf{c})$ without justification: MOA0A0E0 $\Rightarrow \overrightarrow{P B}=\overrightarrow{O P}$ dep M1A1A1	or $\overrightarrow{P B}=\mathbf{c}-\frac{1}{2}$ their (i)(a) or similar with $\overrightarrow{B P}$ or $\overrightarrow{B O}$

Question		Answer			Guidance	
10	(i)	$\begin{aligned} & \frac{3}{8}+\frac{5}{16}+4 p+p=1 \\ & p=\frac{1}{16} \text { or } 0.0625 \end{aligned}$	M1 A1 [2]	$\begin{gathered} 1.1 \mathrm{a} \\ 1.1 \end{gathered}$	$\text { oe } \quad \text { eg } 5 p=1-\left(\frac{3}{8}+\frac{5}{16}\right)$	
10	(ii)	$\begin{aligned} & \frac{3}{8} \times \frac{5}{8} \text { or } \frac{3}{8} \times \frac{3}{8} \text { seen } \\ & \frac{3}{8} \times \frac{5}{8}+\frac{5}{8} \times \frac{3}{8}+\frac{3}{8} \times \frac{3}{8} \\ & \left.=\frac{39}{64} \text { or } 0.609(3 \mathrm{sf})\right) \end{aligned}$	M1 M1 A1 [3]	$\begin{gathered} 1.1 \mathrm{a} \\ 2.1 \\ 1.1 \end{gathered}$	or eg $\frac{3}{8} \times \frac{5}{16}+\frac{3}{8} \times \frac{4}{16}+\frac{3}{8} \times \frac{1}{16} \quad$ ft their p ft their p Allow 0.61	or $1-\left(\frac{5}{16}+\frac{1}{4}+\frac{1}{16}\right)^{2}$ M2 or $1-\left(\frac{5}{8}\right)^{2}$ M2
11	(i)	Prob of seeing a kingfisher is the same each day OR Seeing a kingfisher on one day is independent of other days	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.5b	oe In context	Not: Prob of seeing kingfisher is indep
11	(ii)	0.318 (3 sf)	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.4	BC Allow 0.32 or 0.317	
11	(iii)	0.318 or their (ii) used in a calculation $1-\mathrm{P}(X \leq 3) \text { using } p=0.318 \text { or their (ii) }$ $=0.0854$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{array}{r} 3.1 \mathrm{~b} \\ 1.1 \\ 1.1 \end{array}$	```or \(\mathrm{B}(6\), their (ii)) stated or \(\mathrm{P}(X=4,5,6) \quad\) attempted using \(p=0.318\) or their (ii) Allow 0.0845 to 0.0875 Allow 2 sf BC```	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

